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1 Introduction and Related Work

The ZOGY algorithm is a formally optimal approach to image subtraction when the PSFs of
the images being subtracted are perfectly known, and it gracefully handles any combination
of PSF sizes. In practice, the PSFs are not known exactly, and two serious problems occur:

• Fourier division by terms involving the (noisy) PSF leave artifacts in the image;

• In crowded fields, it may be hard to robustly build PSF models that are good enough to
avoid serious subtraction artifacts.

The older A&L algorithm avoids both of these problems, by working directly in the image
domain (at least in all existing implementations) and solving directly for the difference kernel,
rather than either PSF. It is optimal (and equivalent to ZOGY) in the limit that the template
has no noise. When the template has noise, it suffers from correlated noise in the difference
image. When the template PSF is also larger than the science image PSF, it can also suffer from
deconvolution artifacts. The latter is by far the most serious problem; usually the noise in the
template is sufficiently low that the S/N loss is minimal, and the noise can be decorrelated via
an “afterburner” as described in DMTN-021.

One frequently-discussed approach (from Robert Lupton) to address this is to first “precon-
volve” the science image by its own PSF (or, more precisely, its transpose), because for detec-
tion we want to work with this PSF-convolved “score” or “likelihood map” image anyway, and
with sufficient care other algorithms (e.g. photometry) can be rewritten to work on these im-
ages as well. Applying preconvolution rigorously requires accounting for noise correlations
when performing the least-squares fit for the difference kernel, however, and rewriting all
measurement algorithms to work on score images is at best a lot of work; there may be cases
(especially those involving blends and reporting uncertainties) that cannot be made to run
efficiently on such an image at all.
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DMTN-179 provides a thorough overview of the relationship between ZOGY and A&L and their
practical failure modes, including derivations that are extremely similar to those in the next
section, but (as far as I can tell) does not consider this algorithm or evaluating its feasibility.

2 Algorithmic Framework

The difference image we want to produce (or at least approximate) is a simplified version
of the ZOGY formula for a proper (decorrelated, non-score) difference image in the Fourier
domain (their eq. 13):

𝑧𝐷(𝒌) = 𝜙𝑡(𝒌) 𝑧𝑠(𝒌) − 𝜙𝑠(𝒌) 𝑧𝑡(𝒌)

√𝜎2
𝑠 |𝜙𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝜙𝑠(𝒌)|
2

(1)

where

• 𝑓(𝒌) represents the Fourier transform of 𝑓(𝒙), defined here with its inverse as

𝑓(𝒌) = ∫ℝ2
𝑑2𝑥 𝑒−2𝜋𝑖 𝒌𝑇𝒙 𝑓(𝒙) (2)

𝑓(𝒙) = ∫ℝ2
𝑑2𝑘 𝑒2𝜋𝑖 𝒌𝑇𝒙 𝑓(𝒌) (3)

• 𝑧𝑡(𝒙) and 𝑧𝑠(𝒙) are the template and science images, respectively;

• 𝜙𝑡(𝒙) and 𝜙𝑠(𝒙) are their true (unknown) PSFs and photometric calibration factors (as-
sumed spatially constant for now);

• 𝜎𝑡 and 𝜎𝑠 are their per-pixel noise levels (assumed spatially constant);

• 𝑧𝐷(𝒙) is the difference image.

We have combined the PSFs and photometric calibration terms both for notational simplify
and to reflect the fact that we may want to solve for the photometric scaling of the science
image. Once can equivalently assume instead that either or both images are already in the
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desired flux units and 𝜙 is already normalized to integrate to unity; this will generally be true
for the template in practice.

The PSF 𝜙𝐷 of the difference image can be written in terms of the input PSFs and noise levels:

𝜙𝐷(𝒌) ∝ 𝜙𝑡(𝒌) 𝜙𝑠(𝒌)

√𝜎2
𝑠 |𝜙𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝜙𝑠(𝒌)|
2

(4)

Wewill also use analytic approximations𝑃𝑡(𝒙) and𝑃𝑠(𝒙) to the true template and science image
PSFs𝜙𝑡(𝒙) and𝜙𝑠; these could be (e.g.) Gaussian or double-Gaussian profiles of approximately
the same shapes.1

We will explore algorithms that solve

min
𝜃 ∑𝑥

([𝑉 ∗ 𝑧𝑠](𝒙) − [𝐾(𝜃) ∗ 𝑧𝑡](𝒙))
2 (5)

where

• 𝑉 is an analytic preconvolution kernel 𝑉 (𝒙), derived from 𝑃𝑡 and 𝑃𝑠.

• 𝐾 is difference kernel with model parameters 𝜃 that we aim to fit.

We will attempt to keep as much of the algorithm as possible in the image domain, to better
allow for generalization to spatially-varying PSFs and dealing with missing pixels (neither of
which will be dealt with directly).

The original A&L algorithm is the limit where 𝑉 is a delta function. The preconvolved A&L
algorithm sets 𝑉 = 𝜙𝑠.

1Providing a rough analytic approximation the PSF is a much lower bar than the high-quality PSF models de-
manded by ZOGY, even in crowded fields.
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We can identify the ideal 𝑉 and 𝐾 (those that match the ZOGY result) as

𝑉 (𝒌) = 𝜙𝑡(𝒌)

√𝜎2
𝑠 |𝜙𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝜙𝑠(𝒌)|
2

(6)

𝐾(𝒌) = 𝜙𝑠(𝒌)

√𝜎2
𝑠 |𝜙𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝜙𝑠(𝒌)|
2

(7)

In practice, we need to replace 𝜙 → 𝑃 in 𝑉 , since it must be comprised only of our approxi-
mations:

𝑉 (𝒌) = 𝑃𝑡(𝒌)

√𝜎2
𝑠 |𝑃𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝑃𝑠(𝒌)|
2

(8)

which means the 𝐾 we actually fit for should instead converge to

𝐾(𝒌) ≡ 𝑃𝑡(𝒌) 𝜙𝑠(𝒌)

𝜙𝑡(𝒌) √𝜎2
𝑠 |𝑃𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝑃𝑠(𝒌)|
2

(9)

and the PSF of the resulting difference image is now:

𝜙𝐷(𝒌) = 𝑃𝑡(𝒌) 𝜙𝑠(𝒌)

√𝜎2
𝑠 |𝑃𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝑃𝑠(𝒌)|
2

(10)

When the approximate PSFs are good, the residual image has nearly uncorrelated noise and
hence we can consider each residual pixel an independent data point in our optimization.

When the template has no noise at all, 𝑉 (𝒙) → 𝛿(𝒙) regardless of our choices for the approxi-
mate PSFs, and this algorithm reduces to A&L, as expected. But this reveals a flaw: as in A&L,
the difference kernel 𝐾 we fit for is a net deconvolution when the science image is sharper
than the template. In fact, in the general case, when there is noise in both images and the
PSFs are not the same, one of 𝑉 or 𝐾 is always a net deconvolution, because the target PSF
[10] that we convolve both sides to is an average2 of the science and template PSFs, and hence

2It isn’t a common average – it has elements of both RMS and geometric means to it, in the Fourier domain –
but it is indeed an average.

4



Practical, nearly-proper image subtraction, yet again | DMTN-196 | Latest Revision 2023-04-20

it is always sharper than one of them.

Thismaynot be a problem in practicewhen the template image is sharper, because thismakes
𝐾 a net convolution and 𝑉 a net deconvolution, and 𝑉 is analytic and hence the deconvolution
will at least be noise-free. It probably is a problemwhen the science image is sharper, because
this makes 𝐾 a net deconvolution; 𝐾 is something we fit from the data, and is hence noisy in
general, and fitting a deconvolution kernel is generally difficult. But 𝐾 is less of a convolution
than its counterpart in the vanilla A&L method under these conditions, because 𝑉 is a net
convolution and this reduces the amount of deconvolution required of 𝐾 . In addition, the
residual image that we optimize should be much closer to uncorrelated than the one used in
vanilla A&L, which may improve convergence and reduce biases in the fit for 𝐾 .

This reveals that there is no “free lunch”: to get the ZOGY result, or something close to it,
or even just obtain the score image while treating the noise in the fit rigorously, you have to
deconvolve one of images. Methods that do not deconvolve at all (such as A&L with precon-
volution by 𝜙𝑠 or 𝜙𝑡) do not treat the noise in the fit rigorously (except in certain limits) and
hence are assuming that ignoring the noise correlations does not yield a significant bias. That
may well be a reasonable assumption in the regime we care about; this is an experimental
question that this technical note does not attempt to address. Instead we will proceed by
working on mitigating the problems introduced by needing to deconvolve.

3 Using analytic kernels in image-domain fitting

A discrete image domain convolution of sampled functions is only equivalent to their continu-
ous convolution when both operands are well sampled. We will assume here that the images
𝑧𝑠 and 𝑧𝑡 are well sampled, and that the final difference image is. If we are forward-fitting for
𝐾 with a discrete basis, that’s fine too - the continuous version of 𝐾 is then implicitly the sinc
interpolation of its image, and that’s automatically well-sampled. If we are forward-fitting for
𝐾 with continuous basis functions or constructing 𝑉 from analytic expressions, things are not
so straightforward.

Considering the convolution of 𝐾 with 𝑧𝑡 for now (since the expression for 𝑉 and 𝑧𝑠 is analo-
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gous), we want to find some ̂𝐾 such that

∑
𝒋∈ℤ2

̂𝐾(𝒙 − 𝒋) 𝑧𝑡(𝒋) = ∫ℝ2
𝑑2𝑦 𝐾(𝒙 − 𝒚) 𝑧𝑡(𝒚) (11)

We do not have direct access to 𝑧𝑡 as a continuous function, but we are assuming it is well-
sampled, so

𝑧𝑡(𝒚) = ∑
𝒋∈ℤ2

sinc(𝑦0 − 𝑗0) sinc(𝑦1 − 𝑗1) 𝑧𝑡(𝒋) (12)

and

∑
𝒋∈ℤ2

̂𝐾(𝒙 − 𝒋) 𝑧𝑡(𝒋) = ∑
𝒋∈ℤ2

𝑧𝑡(𝒋) ∫ℝ2
𝑑2𝑦 𝐾(𝒙 − 𝒚) sinc(𝑦0 − 𝑗0) sinc(𝑦1 − 𝑗1) (13)

̂𝐾(𝒙) = ∫ℝ2
𝑑2𝑦 𝐾(𝒙 − 𝒚) sinc(𝑦0) sinc(𝑦1) (14)

Or, if 𝐾 is instead computed in the Fourier domain, we can apply the convolution theorem
and utilize the fact that the Fourier transform of sinc is a unit-size rectangular window, and
obtain ̂𝐾 from 𝐾 :

̂𝐾(𝒙) = ∫||𝑘||1< 1
2

𝑑2𝑘 𝑒2𝜋𝑖𝒌⋅𝒙 𝐾(𝒌) (15)

where ||.||1 is the L-1 (Manhattan) norm, i.e. the region of integration is the unit square.

This makes sense: ̂𝐾 is just 𝐾 with a hard low-pass filter at the band limit (or, in the image
domain, a convolution with sinc) applied.

This adjustment almost certainly does not matter in standard image-domain A&L fitting with
Gauss-Hermite basis functions, since those basis functions are evaluated with the same sub-
pixel offset all over the image and hence any aliasing is constant. We are really fitting with
something that is not quite a Gauss-Hermite basis, but this doesn’t matter unless it severely
degrades the ability of the basis to represent the residuals.

More care should probably be taken when constructing an analytic preconvolution kernel 𝑉
or post-subtraction decorrelation kernel, as it’s easy to imagine the low-pass filter significantly
changing a very narrow convolution kernel or any kind of deconvolution kernel.
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4 Decorrelating basis functions

Using the definition of 𝑉 from [8], we can split the corresponding 𝐾 definition from [9] into
two factors:

𝐾(𝒌) = 𝐾1(𝒌) 𝐾2(𝒌) (16)

𝐾1(𝒌) ≡ 𝑃𝑡(𝒌) 𝜙𝑠(𝒌)
𝜙𝑡(𝒌)

(17)

𝐾2(𝒌) ≡ (𝜎2
𝑠 |𝑃𝑡(𝒌)|

2
+ 𝜎2

𝑡 |𝑃𝑠(𝒌)|
2

)
− 1

2
(18)

𝐾1(𝒙) here is approximately the science image’s PSF – guaranteed to be not just a net convolu-
tion, but well-sampled, too.3 This is what wewill parameterize and fit. 𝐾2(𝒙) is a deconvolution
kernel, but one that is fixed and derived fully from 𝑃𝑡 and 𝑃𝑠.

This separation is most natural if 𝐾 is parameterized as an expansion with coefficients 𝜃𝑛 onto
a set of basis functions 𝐴𝑛(𝒙). Given an image-domain basis 𝐴𝑛(𝒙) appropriate for fitting well-
sampled convolution kernels like 𝐾1, we can construct basis functions 𝐵𝑛(𝒙) appropriate for
the full 𝐾 (with the same coefficients) via

𝐵𝑛(𝒙) = ∫||𝑘||1< 1
2

𝑑2𝑘 𝑒2𝜋𝑖 𝒌𝑇𝒙 𝐾2(𝒌) 𝐴𝑛(𝒌) (19)

This can be computed with FFTs – essentially arbitrary levels of padding and oversampling as
necessary to approximate continuous transformswith DFTs are probably feasible, since these
operations are being applied just to small basis function images. Note that this includes the
truncation past the band-limit derived in 3.

We can also use 𝐾2 in the definition of 𝑉 :

𝑉 (𝒙) = ∫||𝑘||1< 1
2

𝑑2𝑘 𝑒2𝜋𝑖 𝒌𝑇𝒙 𝐾2(𝒌) 𝑃𝑡(𝒌) (20)

To summarize, the steps of this algorithm are:

1. Precompute the image-domain preconvolution kernel 𝑉 and decorrelating basis func-
3...as long as the data is, too, of course, but if not, all is lost.
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tions 𝐵𝑛.

2. Convolve the science image by 𝑉 (this may be a deconvolution, but it is a relatively safe
one involving a noise-free kernel).

3. Apply the A&L algorithm to match the template image 𝑧𝑡 to the preconvolved science
image 𝑉 ∗ 𝑧𝑠, using basis functions 𝐵𝑛.
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B Acronyms

Acronym Description
DM Data Management
DMTN DM Technical Note
PSF Point Spread Function
RMS Root-Mean-Square
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